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Presently, flight systems designed to perform payload -centric maneuvers require pre-
constructed procedures and special hand-tuned guidance modes. To enable intelligent
maneuvering via strong coupling between the goals of payload-directed flight and the
autopilot functions, there exists a need to rethink traditional autopilot design and function.
Research into payload directed flight examines sensor and payload-centric autopilot modes,
architectures, and algorithms that provide layers of intelligent guidance, navigation and
control for flight vehicles to achieve mission goals related to the payload sensors, taking into
account various constraints such as the performance limitations of the aircraft, target
tracking and estimation, obstacle avoidance, and const raint satisfaction. Payload directed
flight requires a methodology for accurate trajectory planning that lets the system anticipate
expected return from a suite of onboard sensors. This paper presents an extension to the
existing techniques used in the literature to quickly and accurately plan flight trajectories
that predict and optimize the expected return of onboard payload sensors.

1. Introduction

P
resently, flight systems designed to perform payload-centric maneuvers require pre-constructed procedures and
special hand-tuned guidance modes. To enable intelligent maneuvering via strong coupling between the goals

of payload-directed flight and the autopilot functions, there exists a need to rethink traditional autopilot design and
function. Research into payload directed flight (PDF) examines sensor and payload-centric autopilot modes,
architectures, and algorithms that provide layers of intelligent guidance, navigation and control for flight vehicles to
achieve mission goals related to the payload sensors, taking into account various constraints such as the performance
limitations of the aircraft, target tracking and estimation, obstacle avoidance, and constraint satisfaction.

A central problem to address in payload directed flight is to control a known and controllable plant interacting
with an external system based on payload and sensor data feedback that gives partial observation and understanding
of the external system, to satisfy mission objectives and constraints on the combined system. This research focuses
on trajectory generation and flight control under varyin g constraints in a highly dynamic environment, autonomous
feature detection and estimation, and modeless autopilot design concepts for multi-objective system control.
Application of this research is targeted towards increasing capabilities; performance, and efficiency in the execution
of missions that require payload-directed and target-directed maneuvering.

This central problem is shown conceptually in the block diagram in Figure 1, where a controllable system is
coupled with an external system which may be umnodeled or poorly modeled for various reasons. These reasons
may include complexity, uncertainty, lack of observability from sensor to state, the size of the external system's
state may overwhelm computational and modeling resources, or lack of available data to generate a model. A suite
of sensors provide some set of observations into the system, and a set of mission objectives are defined concerning
the combined system. The PDF research objectives seek methods, tools, and techniques for designing controllers
around these blocks to ensure the combined system meets mission objective under varying constraints.
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Figure 1. Payload Directed Flight Problem

PDF mission concepts require simultaneous payload data loop closure at multiple levels in the control system
hierarchy, from hi gh-level cognitive deliberative decision making down to low-level reactive continuous-time
control. The PDF architecture defines three distinct layers of loop closure: the outer layer, which comprises of the
mission planner and scheduler, the middle layer, which comprises optimal trajectory calculations, and the inner
layer, where filtered sensor data cuts directly into the autopilot system; providing for instance attitude command
queues. The PDF architecture middle layer problem has two main constituents: computing optimal trajectories, and
incorporating knowledge representation of the observed system. Optimal trajectory calculations play a key role in
the concepts of Payload Directed Flight, particularly in the middle layer PDF architecture, that concerns planning
behaviors on the time-scale of minutes.

A. Payload Missions Requiring Middle Layer Planning
The requirements for loop closure at the middle PDF layer require the onboard systems be able to compute

trajectories under complex constraints and objectives. For instance, automated formation flying aircraft need to be
able to represent complex phenomena - other aircraft, wing tip vortices, weather patterns - in calculating trajectories
that will allow an aircraft to join and follow a formation, while the lead aircraft needs to be able to compute
trajectories that provide the optimal paths for the convoy. A large number of possible applications for payload
directed flight are outlined in Ref. 1.

A more complex example is shown in Figure 2. Consider an aircraft whose mission is to locate; identify, and
monitor a hazardous smoke plume, utilizing onboard body fixed imagers. At the lowest level of control, direct
control of the actuators can be utilized to center the image in the view frame. At the middle layer, sensor data is
used to update an online environment model, and trajectories are planned to field the sensors at locations that
maximize expected data return while navigating safely around the hazardous phenomena. At a higher level, mission
objectives can be planned, scheduled, and prioritized based on what is being observed from the sensors.
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Figure 2. Mid Level Loop Closure in Hazardous Sensing Missions



The airborne earth science community regularly field missions that require flight planning to investigate large
scale highly complex phenomena, fielding onboard payload sensor suites from theoretical predictive models.
Currently, human intuition and judgment is required to interpret the data and develop flight plans to maximize the
expected data return. The 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites
(ARCTAS) mission featured three aircraft — a DC-8, P-3, and B-200 — fielding highly sophisticated scientific
payloads to investi gate a variety of scientific themes, including long-range transport of pollution to the arctic,
emissions from boreal forest fires, aerosol radiative forcing, chemical processes, and validation of satellite sensors.
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Figure 3. ARCTAS Flight Planning and Execution Model

The authors observed the planning model in Figure 3 during the 2008 ARCTAS deployment fielded out of
Fairbanks, Alaska, which was based on earlier INTEX-13 2 ' 3 flight planning process. Participants in this mission
included project managers and principle investigators who oversaw operation of the mission, platform operators and
flight crew who operated the airborne platfornns, instrument operators and experimentalists who operated sensor
equipment and interpreted data in real-time to provide to the managers during flight, and theoretical investigators
and modelers who produced data products from chemical transport models and general circulation models (CTMs
and GCMs) for chemical and meteorological predictions. The flight plans also required aircraft underflights of
satellites for ground truthing and validation. Satellite and model science teams were involved at all stages of pre-
mission flight planning ; flight execution, and post-mission data interpretation. Flight planning relied heavily on
CTM./GCM simulation, analysis of satellite observations, meteorological and chemical forecasts from several
modeling teams, analyses of near real-time satellite data and satellite validation needs, inputs from the aircraft
science teams, and reviews of progress towards meeting mission objectives. The flight planning process required
planners to estimate sensor return expected from the flight paths based on the various data products. A PDF middle
layer planner could integrate into this model as a first step for validation of these algorithms, providing suggested
plans to the project managers and principle investigator teams both in the pre-planning phase and during flight
testing as shown in Figure 4.
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Figure 4. Conceptual Integration for PDF Technology

B. Related Approaches
There are many examples in the UAV literature of closing the loop around payload sensors. In Ref. 4 and 5,

vision systems are used to extract road centerlines. Here the road identification process is achieved through image
processing that exploits the linear or locally linear nature of roadways. Once the road center line is extracted, the
tracking problem is reduced to a simple path following problem. The traditional approach to this problem is to
formulate an inner loop controller using linear control theory and design an outer loop controller that uses the
desired path to specify the desired bank angle or lateral acceleration. Nonlinear control laws have been proposed for
solving this problem" (similar control results are also found in Refs. 6-9). Additionally, similar research tracking
rivers and shorelines is presented in Refs. 10 and 11. An approach for tracking a ground vehicle is presented in Ref.
12. In Ref. 13, a UAV serves as a communication repeater in a larger conununication network. To achieve this, the
UAV orbits a radio or commnunication ground source maintaining a fixed signal-to-noise ratio (SNR) with that
source. The problem is analogous to the contour following problem with in-situ sensors. Presented in Ref. 13 is a
traditional PID based control law formulated around the SNR error between time steps. This formulation, as
demonstrated through simulation, will cause the UAV to spiral towards the specified contour (specified SNR value)
and remain there once it is acquired. However, implicit in the fornulation of this control law is the assumption that
the SNR field is monotonic. In many of the cases already presented, this assumption was not applicable and
necessitated the development of behavioral approaches.

The re-tasking problem for UAS's has also been explored in the literature. In Ref. 14 a list of targets to service is
treated as a Travelin g Salesman Problem. The problem of incorporating vehicle dynamics is achieved by solving the
Traveling Salesman Problem using heuristics from traditional combinatorial optimization and then alternating the
paths between targets as linear paths and minimum Dubms paths 16 . Several competing approaches using Dubins
minimum paths are also available in the literature)"- 11

In Ref. 19, the notion of planning based on sensor swath was explored. In this work a UAS has a downward
facing camera with a field of view. The problem is to determine the optimal tour through the targets such that all
targets are observed. Unlike the TSP problem where the UAS passes through all the targets; this is a case where it is
only necessary for the targets to pass through the sensor's field of view. To sole this problem the UAS was
modeled as a Dubins car with a discrete set of inputs it operating over a finite dt. The operational space for the UAS
was then explored using this model and the learning A* algorithm operating with an admissible heuristic. A similar
problem as this was also considered in Ref. 20. Here, however, the operational space is explored using a
probabilistic planning approach based on the Rapidly-Exploring Random Root Tree algorithm21.22.

Some of the research in the vein of payload directed flight for fixed-winged vehicles is focused on searching for
targets with an unknown location. One example in Ref. 23 is probabilistic in nature and involves selecting a search
space, discretizing that search space as a grid  of cell locations, applying a probability that a target is in a given cell,
and identifying the optimal path (in a probabilistic sense) for identifying targets. The research in this field is



currently focused on optimal searching with multiple UAVs and optimizing the target identification or mapping
ability over many vehicles2'.

The approach developed in this paper will utilize a numerical technique from the path planning literature to solve
problems posed in an optimal control formulation. The algorithm and approach described below extends previous
algorithmic techniques to include highly accurate vehicle trajectory generation under a general set of dynamic, state,
and input constraints. Our approaches differs from the state of the art by utilizing continuous-time feedback control
systems designed specifically to solve the trajectory generation problem utilizing the most accurate vehicle models
available, or tothe level of fidelity desired. In essence, this approach favorably trades run-time complexity for
offline control system design. As a consequence of this approach, input control actuation is a product of the
trajectory generation process and only dynamically feasible trajectories will be generated, rather than searching over
discretized subset of inputs and generating highly simplified, unverified trajectories.

C. Payload Directed Flight Architecture
Consider the overall PDF system architecture, shown in the figure below.
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Figure 5. PDFANide System Architecture

The trajectory planning algorithms presented in this paper are focused on the mid-level loops, ignorin g the mission
plarming and schedulin g blocks (which are the focus of the outer layer), and abstracting the lower-level autopilot
controller in the inner layer. The PDF middle layer architecture is shown in the figure below; grouped into three
conceptual components. The knowledge system is responsible for maintaining knowledge and belief world, using
sensor inputs, state information, apriori beliefs, environment models, etc. The trajectory planning and optimization
system is responsible for plotting trajectories from one state to intermediate goal states given by the higher level
mission planner. The trajectory sequence then is sent to the autopilot system. These three systems are cascaded to
form the mid-level closed-loop system in the PDF architecture.
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Figure 6. PDF Middle-Layer Architecture

2. Problem Formulation and Algorithm Outline
Consider a vehicle system P whose dynamics are governed by a series of non-linear differential equations of the

following form, where xe9i ue9i r, ye,)ii'.

P:
y=h(,u,t,

The model is augmented for vehicle or payload constraints, equality or inequality constraints in the set
G--(G,,Gi), of the form

Ge	 ,u,t	 0 and	 Gi (; , .i, it, t <0

Additionally, the system is subject to a set of boundary constraints B (-, t <_ 0 specified on the state variables of
the system, and can be time dependent. Sensors and mission objectives can be modeled and input into this algorithm
as integral cost functionals 0j(x,u,t). A final state cost L(xf,tf) can also be added. The objective function can be
specified as

Jj =L(f ,tf Y fo,cu,t dt
s

Given an initial state xo, and a subset of the final state x f , (where x (-- x is the goal space), find the continuous

set of control inputs and the associated trajectories from xa to x f that minimize the objective function J. subject to

constraints in G and B.

A. General Approach
Our approach to solution of this problem is as follows.

1. Define the plant P, given by P 	
f

y=h^,u,t
2. Define the state space subsets. Define the goal space x as a subset of x, and define the search

space x as a subset of the state space that contains the goal space; i.e., x e_ x e_ x.
3. Define the augmented plant P' by incorporating the plant constraints G into the plant model.



4. Design a closed loop system G' — the branch trajectory controller system - that can control the

adjoined plant P' from an initial state xoEx, to a destination point in the goal space x f E x ,

utilizing the controller U.
5. Incorporate/implement G' in the online trajectory search algorithm outlined below.

The closed loop control system G' is used to compute trajectories that represent branches in a search tree, similar
to Ref 22. Our modified Tree Search Algorithm is as follows.

Function TREE -SEARCH (xo, to, x,oa1, G', CT)
In uts

xo Start state
to Start time
xgoal Goal state
CT Constraint set
T Search Tree

1. TREE_CLEAR (T )
2. x, = TREE _GET _ROOT (T)

// Try to connect the x0 to the goal point with trajectory S'=(x(t), u(t), t)
3. S'= GENERATE_ BRANCH (G', x,.00r, xgozl)

4. If CHECK_TRAJECTORY_ AGAINST_ CONSTRAINT (S', CT ) do
_5.	 S'= TRIM_TRAJECTORY(S', CT)

End if
6. If S' is not empty; do
7. TREE ADD (T, S', NULL)

End if

//Main Loop
8. While more time left to search, do

// Generate branch to random point.

9. x„ld = RANDOM POINT ( x )
10. X* = GET_CLOSEST_POINT (T, x,,,d )
11. S'= GENERATE 

—
BRANCH (G', x*, xrnd)

12. If CHECK_ TRAJECTORY—AGAINST—CONSTRAINT (S', CT)
13. S' = TRIM_TRAJECTORY(S', CT)

End if
14. If S' is empty, do
15. Next/Continue While

End if
16. TREE ADD (T, S', NULL)

//Generate branch from end of previous branch to goal state
17. x'= GET LEAF ( S')
18. S'= GENERATE_ BRANCH (G', x', x, ,, )
19. If CHECK—TRAJECTORY —  AGAINST_ CONSTRAINT (S', CT)
20. S'= TRIM_TRAJECTORY(S', CT)

End if
21. If S' is not empty
22. TREE—ADD (T, S', NULL)

End if
Next While

Figure 7. TREE-SEARCH Algorithm



Algorithm TRIM TRAJECTORY ( S', CT)
23. Trim branch S' to remove points of collision and innninent collision with CT
24. Generate avoidance/recovery maneuver branch S*
2.5. If avoidance/recovery maneuver branch collides
26. Discard S' and S* branches.

Else
27. Add S* to end of S'

End if

Figure 8. TRIM—TRAJECTORY Algorithm

B. Plume Pointing Problem Example
The trajectory generation system was implemented in simulation and tested as a navigation solution for the plume-
pointing problem outlined in Figure 2. The aerial vehicle starts from a ground position with no concept of where the
smoke plume is. The vehicle is constrained to an approved flight area. The vehicle system must obser ve the plume
through body-fixed imagers, develop an internal model of the plume, and compute trajectories safely around the
plume — within the approved fli ght area - that allows the vehicle to train the imagers on the plume in order to update
its internal model. The simulation scenario was implemented in the Reflection Architecture, including a custom
smoke particle generation rendering system, as shown in Figure 9.

Figure 9. Simulation of a Smoke Plume Monitoring Experiment.
Body-fixed camera looking out the right side of the vehicle, under the wing. Box represents area to avoid.

This phase of testing is only concerned with the trajectory generation system and trajectory following controller. To
that extent, real-time sensor feedback from the camera sensors has not yet been integrated. In this experiment; the
area of the plume that the vehicle wishes to navigate is fixed, and the areas to avoid are also fixed. The aircraft must
compute trajectories that avoid the smoke plume ; the ground, and stay within the approved airspace.

C. Trajectory Generation Problem
The first part of the problem is to consider the constraints. Consider an aircraft system that must navigate from
some initial state x and reach a goal position PE% 3 . The aircraft must avoid obstacles while performing this
maneuver, which are specified as a set of inequality trajectory constraints in C T. Additionally, the aircraft dynamics
are limited: the ailerons can only be deployed in a limited range, and the elevator rates are limited.
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Figure 10. A Simple Trajectory Calculation Exercise

The aircraft is required to make this maneuver while maximizing fuel efficiency. We choose not to have the goal
position incorporated into the cost function Ip at the final time (ternunal error), but rather this constraint will be
handled by the search algorithm. We will use a quadratic form for the cost function, which was chosen for ease of
implementation for later problems. Consider the following cost formulation, where the sensor pointing cost terms,
Ld, and Ld„ are defined in section D.

1

1
J= ff (T Adx+u TB zi +Lds +Ldp. 'd r- ; B, =	 1

0

10

The trajectory problem is stated as follows. Find the continuous set of control inputs and the associated trajectories

from xo to x f that minimize the objective function J, subject to constraints C and S.

1. Plant Definition
First, we must define the plant. This solution will use the dynamics of the Exploration Aerial Vehicle (EAV) at
NASA Ames Research Center as the model. The EAV is a small unmanned aircraft designed for subscale testing of
vehicle control systems. The linear lateral and longitudinal dynamics for the EAV at 25 m/s and 130m altitude were
estimated through a series of flight tests. The system states and inputs are given by

^lat xlon E 	 L,	 Ion E 5^j4

The lateral dynamics for the aircraft were estimated to be

x,,,	 fi Ap Ar AO _	 u,, - earl A( i.dr

0.3404 0.5297

55.2736 4.6948
BL AT-

-1.4038 -9.7679

0 0

-1.0176	 0.0728 -0.8887 0.2918

-16.7704 -5.2969 1.2992	 0

Alot	 13.7306 -0.3138 -1.3475	 0

0	 1	 0	 0

The longitudinal mode were estimated to be the following.
7

x1on = 11vT A 	 Aq A _I Ul°.1 ^bele Agthr

-1.409 - 0.040515 0 -0.096803 -0.0699 3.24

-0.0281 -4.0540 1.2896 0 -0.8405 -0.03057
A,

°" B,°"-0.0566 -20.9832 -1.6784 0 -25.99 -0.07424

0 0 1 0 0 0



In order to incorporate  position into this system, we augment the system with the state vector P =[x y Z] T , where p is
the position vector of the aircraft in a north/east/down coordinate system. We assume a local flat inertial non-
rotating earth assumption, and augment the system with the kinematic relationship, where p,(De.R 3, and W is the
Euler yaw angle.
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Although this is written as a linear relationship, the d> is a nonlinear function of the Euler angles and wind axis
angles, given by

P1,

The	

(^ /^
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 Pti, i2bn , N	

07

The transformations from body axis (BA) to wind axis (WI) to world axis (NED) is given by

R„ ,IZVa C P R,, fx :^_ t P

Rb ,z r,ed 01 B, tai i R. tl^	 B ., 0

2. Space Definitions
The dynamic/kinematic system is formulated with a state space vector %E^M12 and control input space uE'R 4 , where
the system model's state and input vectors were given by

X = n of Xj" Xj" 
7	

Ulnt — t9,1 Ag dr A9e1e Agh,

Here,

x10., = tvT Aa Oq OBE x1" — Q/j P O_ 00?

This problem is formulated with a goal state given as the final desired Cartesian position, independent of all other
states. The search space and goal space are defined as

7
X = x = N YE ZD

3. Augmented Plant
Next we develop the augmented system P'. Our original plant P can be modeled in block diagram form as shown in
Figure 11. Constraints Cp have been added to the input. and are shown with a filled background.
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Figure 11. Vehicle Plant Model

4. Branch Trajecto>y Controller
The next step in our approach is to design a closed-loop controller/plant system G' that can control the adjoined

plant P' from an initial state x O Ex, to a destination point in the goal space X  EX.

There are a few different autopilot system modes we can use to implement the trajectory computation algorithm.
We will base this control problem on based on the existing heading-command autopilot system designed for the
EAV. This autopilot system has the option of implementing either a "track-to" or "direct-to" autopilot mode.
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Truck-To and Direct-To from initial state to desired goal position

The `direct-to' autopilot mode will guide the aircraft directly to the waypoint based on heading command from the
current aircraft state. This autopilot design is a little simpler, as a single arctan evaluation is needed to compute the
heading error at any point in time. An autopilot block dia gram is shown below. Here, roll coca nand is used in favor
of roll-rate connnand for increased margins and implementation on the real EAV system.
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Figure 13. Direct-To Autopilot Design

Each block shown in the figure above is a controller block which can vary in form: here we consider the classic 3-
parameter PID form for the transfer ftinction.

Block A-^ e = B (s) = k n+ k i+ K's
_=1(s)	 s

Figure 14. Transfer function for Transform Blocks (Simple PID Block)

The TRACK-TO autopilot system is similar in form to a DIRECT-TO autopilot system, except for the additional
calculation of a cross-track error as an error signal to drive to zero. The block diagram is shown below.
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Figure 15. TRACK-TO Autopilot Design

The crosstrack error (XT 211.) is used to calculate a delta heading angle (yip) which is the deviation from the
nominal heading angle (yr„o,,,). This relationship is shown graphically below. Also, the line distance calculation
block is also shown.
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Figure 16. Details of XTE Calculations

Our exact vehicle system could be used for these computations, but effectively a heading control system will
turn the complex 6-DOF vehicle system with controller into some sort of low-pass filter. The next step is to develop
the autopilot and simulation test with this reduced model. The Matlab Simulink implementation of this controller is
shown in Figure 19 below. The diagrams in Figure 20 shows the output of a test script, which generated a random
path, and a set of random initial conditions for the aircraft. The resultant trajectories computed by the closed-loop
system are shown.

D. Sensor Models
The implementation in Figure 19 contains a "Cost Model” block. This block contains the computations for compute
the derivative of the cost function at any point in time and state of the vehicle system. Three different cost models
are included in this test. The first cost model penalizes sensor pointing inaccuracy of the sensor towards a specified
target, as well as pointing distance, as illustrated in Figure 17 below.

Body-Fixed
Sensor

Swath
Target

Object	 Vs
P bs

dr

Va20

Desired	 1,
Pvehicle

Distance	 y/	 "o,

I ,cLd,

Figure 17. Cost Models Used for Sensor Pointing Accuracy

Let a sensor axis frame Fs be defined as a fixed frame relative to the aircraft, with the y-axis pointing in the direction
of the sensor. Let R521 represent the 3x3 transformation matrix from Fs to Fl, where Fl is the local axis system. Let
R12iy represent the rotation matrix from Fl to Fw, where Fw is the world axis system (here we assume selection of an
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appropriate world axis system, such as a world-fixed east/north/up axis system). Let the position of the vehicle be
given by P,,hicle, and the position of the observed point be specified by P ohS . Then the directional cost incurred from
point inaccuracy, L d„ is computed by the following equation. The resulting costs for random trajectories — when
only Ldr directional costs are taken into account - are shown in Figure 21.
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In addition to pointing accuracy, the sensors need to maintain a specific distance to the target. This is modeled as a
curve that falls off with the square of the distance to the target position. Let R d,, be the desired distance from the
sensor to the phenomena, and let Rd, be the deviation distance, then the resulting equation is and graph is shown in
Figure 18 below. The resulting costs for random trajectories — when only Ld5 distance costs are taken into account -
are shown in Figure 21.
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Figure 18. Cost Distance Model and Equation
Shown for Rd,, = 780, Rd^,=30



Figure 19. Simulink Model for Trajectory Control System
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3. Simulation Results
The controller was tested simulation using the Reflection Architecture, with the entire mission scenario (except for
landing) being controlled by the trajectory planner. The Matlab Simulink model was converted into C++ code using
the Real-Time Workshop Embedded Coder product from Mathworks. The tree-branching algorithm was allowed to
plan for 5 seconds. The planning system looked ahead of the current time by 10 seconds, and repeated the planning
algorithm every 20 seconds. The system was tested on several systems with the renderer, visualizations; and full
UAV simulation being run on the same computer. The test was run on an Intel Core 2 X9650, 3 GHZ, 3GB RAM.
The screenshots shown in Figure 23 shows a typical screenshot of the entire system running, with the visualization
rendering 500 branches; and associated costs shown in color: red represents higher costs, blue represents lower
costs. The trajectory planner immediately guides the aircraft to the optimal track, which is a right hand turn to allow
sensor monitoring of the plume, at the distance Rd21 from the target position. All trajectories found avoid the
plume's bounding volume and guides the aircraft safely inside the approved fly zone. To reliability of the system in
real-time, the flight management system can be disengaged and the aircraft can be hand piloted away from the
plume and commanded to a hazardous orientation; as soon as the autopilot and planner is reengaged, the trajectory
planner irnrnediately computes the appropriate control inputs and trajectories to recover from the unusual orientation
and guides the aircraft safely back to the optimal track. For a test lasting 30 minutes, the search algorithm averaged
48,202 nodes (states) added to the tree, with 343.5 branches, taking 15,002,030,502 CPU clock cycles. The
tral ectory planner was running in its own thread and had full utilization of one of the processors.

Figure 23. Screenshot of Planner and Branches.
Branches are shown as red.lblue lines, where red represents higher- costs and blue represents lower- costs. The green

line represents the trajectory selected.
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Figure 24. Takeoff Trajectories (Overhead shot shown on right).
Costs build up fast because of the distance to the plume, but the selected trajectory immediately takes the vehicle to

the `optimal ' path for sensor pointing.

4. Conclusion and Future Work

The results of the simulation were promising. The vehicle was able to successfully navigate the area and keep
the smoke plume in view 100% of the time after the aircraft establishes its position in the `optimal' track. Constraint
satisfaction was maintained for 100% of the time after takeoff, and constraints (plume collision volume, ground
volume; and approved airspace volume) were never violated.

As follow up work on this project, this simulation will be extended to complete the mission objectives
completely autonomously.

1. Inte grate the camera sensor processing module and environment knowledge database to close the loop fully
around this scenario, where the plume position is not known ; and the mission is executed fully
autonomously.

2. Integrate a higher fidelity non-linear 6-DOF model of our UAV for trajectory planning.
3. Develop more accurate trackin g with a linearized trajectory controller to follow the trajectories.\
4. Extend the trajectory generation algorithm to include swappable cost modules for different sensors, and

multiple sensors.
5. Extend the generation algorithm to select from several different closed-loop control systems, based on a

heuristic.
6. Perform a point-sampling maneuver into the `less-dense' areas of the plume, and a ground sensing

maneuver over a specified target area.
7. Flight test these algoritluns at NASA Ames Research Center./Moffett Airfield on the X-SLAV

(eXperimental Sensor Controlled Aerial Vehicle) plug-and-play UAV (see Figure 25).
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X-SCAV Specifications
Airframe:	 J3 Piper Cub, 50% Scale,

Clipped Wing
Manufacturer-	 Designed by Bill Hempel
Wing Span:	 15ft
Length:	 11.8 ft
Weight, Takeoff- 	 65 Ibs
Payload Capacity: 30lbs (TBD)`
Cruise Altitude:	 450 ft (COA Limit)
Cruise Speed:	 40 knots
Engine:	 3W Technology210xiB2-F-TS,

Two Stoke Gas/Oil, 10.5lbs,
210cc, 24H P

Servomotors-	 6xJR-8611A(JR8101)2.24oz,
320 oz-in

^ - 1

a'-

, K "^!
r ,.¢ rte:

0

R -•

X-SCAV is a plug-and-play sensor craft for
payload and sensor directed control
concepts and testing.

Figure 25. X-SCAV UAV Platform Specifications
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